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PRESSURE DRAG OF AXISYMMETRIC COWLS HAVING LARGE INITIAL

LIP ANGLES AT MACH NUMBERS FROM 1.90 TO 4.90

By Nick E. Samanich

SUMMARY

The results of experimental and theoretical data on nine cowls are

presented to determine the effect of initial lip angle and projected

frontal area on the cowl pressure drag coefficient at Mach numbers from

1.90 to 4.90. The experimental drag coefficients were approximated well

with two-dimensional shock-expansion theory at the lower cowl-projected

areas, but the difference between theory and experiment increased as the

cowl area ratio was increased or as shock detachment at the cowl lips

was approached. An empirical chart is presented, which can be used to

estimate the cowl pressure drag coefficient of cowls approaching an el-

liptic contour.

INTRODUCTIONS

Evaluation of cowl designs for high-speed flight is a necessary

part of a preliminary performance analysis. Several theoretical ap-

proaches are available that give satisfactory agreement with experi-

mental pressure-drag data on unity-mass-flow-ratio cowls for various

combinations of contours and flow conditions. For example, the linear-

ized source distribution method gives satisfactory results for slender

bodies at moderate supersonic speeds, but the error increases with either

increasing Mach number or increasing surface angle (refs. i and 2).

Van Dyke's second-order supersonic flow calculations are limited to con-

tours with maximum slopes less than 0.94 (M2 - l) -1/2 (where M is

Math number), which corresponds to surface angles of approximately 28 °,

18°, and 15 ° at Mach numbers of 2, 3, and 4, respectively (ref. 5).

two-dimensional shock-expansion method (refs. 4 to 6) neglects the

three-dimensional effect and the reflection of disturbances originating

at the surface, which introduces only small errors except at large lip

angles (near shock-detachment values). Another possible way to predict
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cowl drags theoretically is with the use of the method of characteris-
tics, but this solution is quite tedious and time consuming and requires
modifications whendetached shock waves exist (ref. 7). A review of
various existing theories appears to indicate a definite need for em-
pirical cowl-pressure-drag data in the area of lip angles near shock-
detachment values, where most of the methods yield the greatest devia-
tions from the exact values.

In view of the items discussed previously and the lack of sufficient
experimental data, a wind-tunnel test program was initiated at the NACA
Lewis laboratory. An investigation of existing cowl designs indicated
that an elliptic contour closely approximated the majority of shapes
examined. A family of nine elliptically contoured cowls was designed,
therefore, which incorporated large initial lip angles and various pro-
jected areas. Measuredcowl pressure drags in the Mach 2.0 to S.O range
were comparedwith values obtained with two-dimensional shock-expansion
theory. This theory was chosen because it _s readily adaptable to
preliminary-type analysis calculations.

APPARATUS

The contours from the lip to the maximum6-inch-diameter section
(fig. i) of the steel models were defined by portions of ellipses, which
were tangent at the semiminor axis to the ccnstant diameter portion of
the cowls. The aspect ratio of the ellipses was varied to give initial
nominal lip angles of 20° , 28° , and 34° with projected areas of 20, 35,
and 50 percent of the maximumfrontal area. The final cowl coordinates
x and Yr of the family of cowls tested are listed in table I. Static-
pressure orifices were located externally on the cowls at longitudinal
positions from 0.060 inch aft of the lip to the constant-diameter sec-
tion. The internal contour of the cowls was a straight diverging taper
from the cowl lip to the cowl exit. All of the cowls had sharp lips with
maximumradii of 0.0025 inch. Scaled drawings of the external contours
are shownin figure i and photographs of three typical models are pre-
sented in figure 2. The models were strut supported and tested in sev-
eral of the Lewis laboratory small supersonic wind tunnels at zero angle
of attack. The Reynolds numberwasheld relatively constant at each
Mach numberand had values of 5.2xi06, 6.1xlO6, 4.9×106, l.lXl06, and
4.4×106 per foot at the respective free-stream Machnumbersof 1.98,
2.47, 2.94, 5.88, and 4.90.

RESULTSANDDISCUSS[0N

The experimental surface pressure coefficients are listed as a func-
tion of axial distance from the lip in table II. Figure 3 is a represen-
tative plot showing the longitudinal pressure distribution for both the
experimental and theoretical results of the 54° initial lip angle cowls
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at a Machnumberof 5.88. The experimental pressure distributions are
closely approximated by shock-expansion theory at the smaller projected
areas but deviate progressively as the projected cowl areas are increased.

The experimental pressures were integrated over the cowl surfaces
and the resultant drag coefficients, based on the maximumcross-sectional
area, were comparedwith values calculated using two-dimensional shock-
expansion theory in all cases where attached shock waves existed. No
attempt was madeto calculate theoretical drag coefficients when detached
waves existed at the cowl lip, but estimates can be madewith the aid of
reference 8.

Figures 4, 5, and 6 show the effects of lip angle, projected cowl
area, and Machnumberon the "cowl pressure drag coefficients. The theo-

retical results are shown only for attached-shock conditions at the lip.

While the empirical data are approximated rather well with shock-

expansion theory at the lower projected cowl areas, the deviation between

theory and experiment became increasingly greater as the area ratio was

increased. This deviation with increasing area ratio can be attributed

to the greater variation in radius (a larger three-dimensional effect).

In several instances, the theoretical results indicated a rather sharp

rise in drag as the shock-detachment value was approached at the lip, but

the experimental data, in general, revealed no abrupt changes when theo-

retical shock detachment had been attained at the lip. The cowl family

tested maintained the initial lip angle for only a small distance (less

than 0.i in.), which caused only a small portion of the cowl-lip shock

wave to detach at the predicted shock-detachment Mach numbers. This

detail can be seen in the schlieren photographs in figure 7 where shock

detachment at the lip was not apparent until Mach numbers substantially

lower than theoretically predicted (Mach 2.95) had been reached.

Although no data are presented, several of the cowls were investi-

gated at two Reynolds numbers at Mach 2.94. A small effect was noted,

which resulted in drag coefficients 5 to 5 percent higher for the cowls

tested at a Reynolds number of 2.5×106 as compared with those tested at

4.9×106 per foot.

The experimental data are combined in figure 8 as an empirical chart

for use in estimating the cow, pressure-drag coefficient of cowls approx-

imating or having an elliptic external contour. The use of the chart is

illustrated by the arrows in figure 8. For example_ the cowl pressure

drag coefficient at Mach 3.4 of an elliptically contoured cowl, having a

cowl projected area which is 20 percent of the total frontal area and

an initial lip angle of 34 ° , is approximately 0.096.



CONCLUDING _S

The cowl pressure drag coefficients were approximated well with two-

dimensional shock-expansion theory at the lower projected cowl areas, but

the deviation between theory and experiment increased as the projected

cowl area ratio was increased or as shock detachment at the cowl lip was

approached. An empirical chart was developed from the experimental data

for estimating the pressure drags of cowls having or approximating ellip-
tic external contours.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, September 4, 1958
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TABLE II. - EXPERIMENTAL PRESS[[RE DISTRIBUTIONS

Surfac_ pressure coPFft_ent Axial dis- Surface prossure ooeI'fl:ient

at Math nun,ber_ of - tancu aft at Math numbers of -

1.98 2.47 2,94 3.8_ 4.90

, 7 , .276 0.07 0.50_ 0.413 9.._50r0.522 i0.294
.]I i .4BLI 27H 246 .45_ .551 .29)] .273 I .248

.]i_ I .401 I .242! .244 .18 .42. = .537 .2981 .24_ .255

i .229i .205 ,20 ,421 .535 .2911 .24; .225.21

,28

.54

.64

.76

.90

i .0b

i .2,9

1.56

i .55

! •90

2.40

I .I14! .109 1.08 .25] .215 ,1881 .152 ,145

I .10,5! .097 1.50 .25. _ .197 ,1651 .156 .127

I .088] .085 1.55 .181 .156 .1251 .I14 .I09

I .071] ,075 1.90 .14. = .124 .i011 .09( .091

! .06'91 .055 2.25 .104 .089 .0821 .Og? .067

I m521 .025 2.60 .08] .078 .0701 .05_ .055

] .006] .014 2.95 .071 .056 .0501 .04[ .049

5,50 .037 .030 .0281 .02! .055

4.50 -.O32 -.015 -.01ll-.00.: .007

Cowl 3

tahoe aft at Mach numbers of -

x. i .�h 2.47 2.94 5. _8 4.98

In.

0.08 0.578 0.459 0.59_ 0,595 0.50_-_

.18 .466 .558 .._09 .2"hl .244

.22 .456 .557 .295 ,251 .226

.50 .455 .540 ,508 .24] ,25d

.40 .410! .526 .279 .255i .22i; I

.52 .581 .510 .2_W

.342 .277 .22£ .214
.66 .56_ .28_ .247 .206 .19(

.80 .241 .]9E .19]

.98 .515 .251 .PlY .18[ .i'

1.18 .271 .221 .19i5 .164 .15[

1.40 .258 .189 .!6_ .i5_ < .iS]

1.65 .2101 .175 .155 .12/ .ii[

1.90 .184 .157 .]53 .

2.20 .165 .140 .120 .10( .09E I

2.50 ,154 ,151 .I17 .09_ .8951
i

2.f5 .144 .126 .i12 .O96 .089]

_.25 .iii .097 .079 .07_ .071]

5.75 .064 .O56 .044 .041 .08[

.085 .O42 .056 .0.57 .04_

4,25 , 2 .004_ .Ol_

4.75 .054 .036 .028 ,02] .045
5.25 02 .018 .012 .023 .05'::

6,0C ! -.014, -.015 -.010

__i7Z_ I-.037q-0:_0-0241-oUjL00:_

1.05

1.20

i .55

I . 50

Cowl 4

pressure coefftctent
Math numbers of -

4.90

0.485

.415

.377

.542

.330

.506

.282

.225

.195

.159

.115

.082

.062

.052

.026

Cowl 5

Axial dis- [_r_ISurface pressure coeff_c/enttance aft at M_ch numbers of -

X ' 1.98 2.47 2.94 3.8 4.9)

l_.

0.08 0.914 0.756 0.895 0.56: 0.554

.12 .810 .845 .691 .49 .474

.16 .595 .55! .46 .458

.22 ] ._25 .582 .508 .44 .428

.28 ] .716 .592 .557 .44' .416

.36

.44

.54

.84

.76

.90

1.04

1.20

1.36

1.54

1.90

2.55

2.80

.675 .565 .554 .41 .408

.619 .529 .490 .40 .591

.568 .485 .445 .57 .555

.504 .457] .418 .55 .519

.414 .562 _ .349 .27 .271

.SlO .275 .256 .22_ .211

.251 .220 .207 .18 .176

.216 .2011 .193 .i5:' .146

.178 .180 i .164 .12_ .128

.146 .155] .124 .I0' .i04
i

.094 .090 .099 .07 .080

.021 .054 .046 .05' .044

-.0_4 -.014 -.001 .00 _ .020

Cowl 8 d.l

of lip [ 7, __.9_!_.86 4.<

_ 0.94¢: 5_4o
.12 [ .924 .711 .506! .5_ .505 i
.!5 _ [9_ .._361_ .584 .508 .482'

.22 .77:5j .542 .554 .492 .458

.50 .484 .4_8

.75_I .929 .5591

.38 .861 .588 .5151

.50 .585 .550 .4iill

.74 .591

.90 .394 .582i ..5251

1.08 .556 .551 .884[

1.50 I .286 .290 .257[

1.55 .258 .248 .221[

1.90 .172 .189 .1801

2.25 .I02 .158 .Ii_I

2.80 .084 .103 .O89[

2.95 .051 .068 .05_1

5.30 -.012 .057 .)561-.078 -.014 .0©91

5.704.50-.053 .008 -.011[

.475 .452i

.455 .454

.40_ ._92

.5_8 .59C

.29_] ,514
.278

.255 .242

.227 .212

.194i .182

.1511 .146

.111] .110

.0877 .086

.065 i .068

.0411 .059

• 025i .082

.O08j .015

Cowl 7

Axial dis-[Surface pressure coeffle_ent

of llp, 1.98 2.47 2.94 3.88 4.90

_.;i 9090.77:,o.72_

.I2 .968 i[ '._i.877 .785 .649 .625

.16 .875 .782 .885 .582 .548

.22 .715 .853 .559 .499 .459

.28 .596] .555 .480 .400 .588

58 1.4861..8 ..0i .518
.44 I .4241 .384 .528 .288 .269

.54 ] .545 .299 .249 .241 .221

.64 _ .276 .251 .224 .187 .180

.76 .194 .172 .160 .145 .138

1.26 .0111 .027 .028 .055 .045

.88 .128 .125 .I01 .I07 .102

I.O0 .080 .081 .087 .075 .078

1.12 .055 .045 .065 .056 .055

1.40 !-.009 I .008} .014 i .026 .0.31

i ,

Cowl 8

Axtal dis- Surface pressure coeff c_ent

tance aft at Math numbers of -

Of llp, 1.98 2.47 2.94 [5.88 4.9_

X,

In.

0o8 il25011105109951085;_078_
.1_ _._[,.o_,f .9_ I ..... _.16 _.015 ._871 ._04 .71_1 ._80
.22 .9021 .6021 .896] ._4,1 .598.28 .8251 .7581 .690 .57; .549

!
.58 7_71 .6591 .6131 .51[ .495

.44 .620] .584] .509] .44; .450

.54 .5541 .4781 .422] .59 )1 .581

.64 .4921 .4401 .411] .33}I .525

.78 .410] .567] .3451 .2fi_l .275

.90 .524l .297] .2831 .2_ _[ .227

1.09 .2541 .2351 .2051 .I£H .180

1.24 .2051 .1961 .181! .14 _1 .144

t,42 .1451 .1421 .159t .lltl .120

1.62 .0901 .0921 .085{ .0841 .085

1.92 .0381 .0501 .0501 .0151 .055

2.42 -.0511-.0071 .0091 .01)1 .025

..... I

Cowl 9 L_
I Axial dis- Surface pressure coefftctent

: tance aft at Mach numbers of -

of lip, 11.90 '_.47 [2.94 I .88q74.90]

..... .799 0.7561220Tz    59
.11 1.i16 .975 I' .871 ,755 .70_

..... 1.051 .8971 .7891 .6911 .6041

.zd I .9751 .8461 .7541 .6681 .8541

.50 I .9051 .856i .74_1 ,639[ .6221

_ t ,8191 .785_ ._t_l ,tlOi;f .8101

,555 .559.... 72_I .7o7 .8_, .4671.4451
.60 .5521 .567 .49S[

,- .4851 .4971 .4601 .597[ .3841

._u , .4oo] .4251 .5911 5541 .5241

I
1.08 I .5271 .3491 .5091 .2821 .2701

1.30 I .252] .279l .241[ ,2511 .2181

lobb I .202l .2_81 ._15[ .198] .181]

1.90 I .1281 .1881 .I54_ .I_51 .1591

2.25 _ .0501 .0951 .0871 .0921 .O971

2.60 ]-.00] .0941 .052] .0831 .0571

2.95 I-.0591 .0241 .0_±1 .0551 .0491

5.25 I-.0571-.0051-.0011 .0171 .0581

3._0 I-.08]i-.01_1'-20081 .012_ .0251
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(a) Cowl 7.

C-4_072

(b) Cowl 8.

(c) Cowl 9.

Figure 2. - Cowls 7, 8, and 9.

C-45@74
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Figure 8. - Empirical chart for estimating cowl pressure drag coefficients of

cowls approaching an elliptic contour. The pressure drag at a Mach number

of 5.4 of a cowl having a ratio of projected area to maximum frontal area

of 0.20 and an initial external lip angle of 34 ° is found by tracing the

arrows to be approximately 0.096.

NASA - LangleyField,Va.




